June 4, 2019
AWS Office
2100 University Ave, East Palo Alto, CA 94303
1:00pm - 4:00pm

*Event is at capacity, by filling out the form you will be added to the waitlist*
Every enterprise today wants to accelerate innovation by building AI into their business. However, most companies struggle with preparing large datasets for analytics, managing the proliferation of ML frameworks, and moving models in development to production.

In this workshop, we’ll cover best practices for enterprises to use powerful open source technologies to simplify and scale your ML efforts. We’ll discuss how to leverage Apache Spark™, the de-facto data processing and analytics engine in enterprises today, for data preparation as it unifies data at massive scale across various sources. You’ll also learn how to use ML frameworks (i.e. TensorFlow, XGBoost, Scikit-Learn, etc.) to train models based on different requirements. And finally, you can learn how to use MLflow to track experiment runs between multiple users within a reproducible environment, and manage the deployment of models to production on AWS Sagemaker.

Join this half-day workshop to learn how unified analytics can bring data science and engineering together to accelerate your ML efforts. This free workshop will give you the opportunity to:


1:00-1:30 Registration, & Networking
1:30-2:00 Opening Remarks - Unifying Data Science and Data Engineering
2:00-2:30 Customer Stories and Use Cases
2:30-2:45 Networking with Peers 
2:45-3:15 Data Engineering Interactive Demo & Best Practices: Preparing Data for Analytics
3:15-3:45 Data Science Interactive Demo & Best Practices: Model Training and Machine Learning
3:45-4:00 Q&A

Space is limited for this event. Sign up today to reserve your spot!

Event is at capacity, by filling out the form you will be added to the waitlist.

Please fill out the form to join the waitlist